Identification of Linear Stochastic Systems Through Projection Filters
نویسنده
چکیده
A novel method is presented for identifying a state-space model and a state estimator for linear stochastic systems from input and output data. The method is primarily based on the relationship between the state-space model and the finite difference model of linear stochastic systems derived through projection filters. It is proved that least-squares identification of a finite difference model converges to the model derived from the projection filters. System pulse response samples are computed from the coefficients of the finite difference model. In estimating the corresponding state estimator gain, a z-domain method is used. First the deterministic component of the output is subtracted out, and then the state estimator gain is obtained by whitening the remaining signal. An experimental example is used to illustrate the feasibility of the method.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملGeneralized adaptive comb filters/smoothers and their application to the identification of quasi-periodically varying systems and signals
The problem of both causal and noncausal identification of linear stochastic systems with quasiharmonically varying parameters is considered. The quasi-harmonic description allows one to model nonsinusoidal quasi-periodic parameter changes. The proposed identification algorithms are called generalized adaptive comb filters/smoothers because in the special signal case they reduce down to adaptiv...
متن کاملApplications of Stochastic Algorithms for Optimal Linear Representations
Simplicity of linear representations makes them a popular tool; in image analysis, the two widely used linear representations are: (i) linear projections of images to low-dimensional Euclidean subspaces, and (ii) linear spectral filtering of images. In view of the orthogonality and other constraints imposed on these representations (the subspaces or the filters), they take values on nonlinear m...
متن کاملFast Particle Filters and Their Applications to Adaptive Control in Change-Point ARX Models and Robotics
The Kalman filter has provided an efficient and elegant solution to control problems in linear stochastic systems. For nonlinear stochastic systems, control problems become much more difficult and a large part of the literature resorts to linear approximations so that an "extended Kalman filter" or a "mixture of Kalman filters" can be used in place of the Kalman filter for linear systems. Since...
متن کاملDelay-dependent robust stabilization and $H_{infty}$ control for uncertain stochastic T-S fuzzy systems with multiple time delays
In this paper, the problems of robust stabilization and$H_{infty}$ control for uncertain stochastic systems withmultiple time delays represented by the Takagi-Sugeno (T-S) fuzzymodel have been studied. By constructing a new Lyapunov-Krasovskiifunctional (LKF) and using the bounding techniques, sufficientconditions for the delay-dependent robust stabilization and $H_{infty}$ control scheme are p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004